At A Glance
It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.Paragraph Block- is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry’s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.


Heading 2
Heading 3
Heading 4
Heading 5
- This is a list
- Item 1
- Item 2
- Sub list
- Sub list 2
- Sub list 3
- More list
- More list 2
- More list 3
- More more
- More more
This is the pull quote block Lorem Ipsumis simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry’s standard dummy text ever since the 1500s,
ExperianThis is the citation

This is the pull quote block Lorem Ipsumis simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry’s standard dummy text ever since the 1500s,
ExperianThis is the citation
| Table element | Table element | Table element |
| my table | my table | my table |
| Table element | Table element | Table element |

Media Text Block
of the printing and typesetting industry. Lorem Ipsum has been the industry’s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum
My Small H5 Title


By: Wendy Greenawalt When consulting with lenders, we are frequently asked what credit attributes are most predictive and valuable when developing models and scorecards. Because we receive this request often, we recently decided to perform the arduous analysis required to determine if there are material differences in the attribute make up of a credit risk model based on the portfolio on which it is applied. The process we used to identify the most predictive attributes was a combination of art and sciences — for which our data experts drew upon their extensive data bureau experience and knowledge obtained through engagements with clients from all types of industries. In addition, they applied an empirical process which provided statistical analysis and validation of the credit attributes included. Next, we built credit risk models for a variety of portfolios including bankcard, mortgage and auto and compared the credit attribute included in each. What we found is that there are some attributes that are inherently predictive regardless for which portfolio the model was being developed. However, when we took the analysis one step further, we identified that there can be significant differences in the account-level data when comparing different portfolio models. This discovery pointed to differences, not just in the behavior captured with the attributes, but in the mix of account designations included in the model. For example, in an auto risk model, we might see a mix of attributes from all trades, auto, installment and personal finance…as compared to a bankcard risk model which may be mainly comprised of bankcard, mortgage, student loan and all trades. Additionally, the attribute granularity included in the models may be quite different, from specific derogatory and public record data to high level account balance or utilization characteristics. What we concluded is that it is a valuable exercise to carefully analyze available data and consider all the possible credit attribute options in the model-building process – since substantial incremental lift in model performance can be gained from accounts and behavior that may not have been previously considered when assessing credit risk.

By: Tracy Bremmer Preheat the oven to 350 degrees. Grease the bottom of your pan. Mix all of your ingredients until combined. Pour mixture into pan and bake for 35 minutes. Cool before serving. Model development, whether it is a custom or generic model, is much like baking. You need to conduct your preparatory stages (project design), collect all of your ingredients (data), mix appropriately (analysis), bake (development), prepare for consumption (implementation and documentation) and enjoy (monitor)! This blog will cover the first three steps in creating your model! Project design involves meetings with the business users and model developers to thoroughly investigate what kind of scoring system is needed for enhanced decision strategies. Is it a credit risk score, bankruptcy score, response score, etc.? Will the model be used for front-end acquisition, account management, collections or fraud? Data collection and preparation evaluates what data sources are available and how best to incorporate these data elements within the model build process. Dependent variables (what you are trying to predict) and the type of independent variables (predictive attributes) to incorporate must be defined. Attribute standardization (leveling) and attribute auditing occur at this point. The final step before a model can be built is to define your sample selection. Segmentation analysis provides the analytical basis to determine the optimal population splits for a suite of models to maximize the predictive power of the overall scoring system. Segmentation helps determine the degree to which multiple scores built on an individual population can provide lift over building just one single score. Join us for our next blog where we will cover the next three stages of model development: scorecard development; implementation/documentation; and scorecard monitoring.

By: Kari Michel In my last blog I gave an overview of monitoring reports for new account acquisition decisions listing three main categories that reports typically fall into: (1) population stability; (2) decision management; (3) scorecard performance. Today, I want to focus on population stability. Applicant pools may change over time as a result of new marketing strategies, changes in product mix, pricing updates, competition, economic changes or a combination of these. Population stability reports identify acquisition trends and the degree to which the applicant pool has shifted over time, including the scorecard components driving the shift in custom credit scoring models. Population stability reports include: • Actual versus expected score distribution • Actual versus expected scorecard characteristics distributions (available with custom models) • Mean applicant scores • Volumes, approval and booking rates These types of reports provide information to help monitor trends over time, rather than spikes from month to month. Understanding the trends allows one to be proactive in determining if the shifts warrant changes to lending policies or cut-off scores. Population stability is only one area that needs to be monitored; in my next blog I will discuss decision management reports.
In this article…
typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.


