Loading...

Generic fraud score – best practice, Part 1

Published: October 9, 2009 by Guest Contributor

By: Kennis Wong

In this blog entry, we have repeatedly emphasized the importance of a risk-based approach when it comes to fraud detection. Scoring and analytics are essentially the heart of this approach.

However, unlike the rule-based approach, where users can easily understand the results, (i.e. was the S.S.N. reported deceased? Yes/No; Is the application address the same as the best address on the credit bureau? Yes/No), scores are generated in a black box where the reason for the eventual score is not always apparent even in a fraud database.

Hence more homework needs to be done when selecting and using a generic fraud score to make sure they satisfy your needs. Here are some basic questions you may want to ask yourself:

What do I want the score to predict?
This may seem like a very basic question, but it does warrant your consideration. Are you trying to detect these areas in your fraud database? First-party fraud, third-party fraud, bust out fraud, first payment default, never pay, or a combination of these? These questions are particularly important when you are validating a fraud model. For example, if you only have third-party fraud tagged in your test file, a bust out fraud model would not perform well. It would just be a waste of your time.

What data was used for model development?
Other important questions you may want to ask yourself include:  Was the score based on sub-prime credit card data, auto loan data, retail card data or another fraud database? It’s not a definite deal breaker if it was built with credit card data, but, if you have a retail card portfolio, it may still perform well for you. If the scores are too far off, though, you may not have good result. Moreover, you also want to understand the number of different portfolios used for model development. For example, if only one creditor’s data is used, then it may not have the general applicability to other portfolios.

Related Posts

...

Published: June 6, 2023 by admin

According to Experian data analysis and a recent study on unemployment insurance fraud, at least 25% of new claims are a result of identity theft.

Published: April 15, 2021 by Eric Thompson

It’s critical for credit unions to understand the specific threats presented by life online and be prepared with a fraud detection and prevention plan

Published: April 13, 2021 by Alison Kray

Subscription title for insights blog

Description for the insights blog here

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Categories title

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book.

Subscription title 2

Description here
Subscribe Now

Text legacy

Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source.

recent post

Learn More Image

Follow Us!