Loading...

Test

Published: March 1, 2025 by Jon Mostajo, Sirisha Koduri

In this article…

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus at nisl nunc. Sed et nunc a erat vestibulum faucibus. Sed fermentum placerat mi aliquet vulputate. In hac habitasse platea dictumst. Maecenas ante dolor, venenatis vitae neque pulvinar, gravida gravida quam. Phasellus tempor rhoncus ante, ac viverra justo scelerisque at. Sed sollicitudin elit vitae est lobortis luctus. Mauris vel ex at metus cursus vestibulum lobortis cursus quam. Donec egestas cursus ex quis molestie. Mauris vel porttitor sapien. Curabitur tempor velit nulla, in tempor enim lacinia vitae. Sed cursus nunc nec auctor aliquam. Morbi fermentum, nisl nec pulvinar dapibus, lectus justo commodo lectus, eu interdum dolor metus et risus. Vivamus bibendum dolor tellus, ut efficitur nibh porttitor nec.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Maecenas facilisis pellentesque urna, et porta risus ornare id. Morbi augue sem, finibus quis turpis vitae, lobortis malesuada erat. Nullam vehicula rutrum urna et rutrum. Mauris convallis ac quam eget ornare. Nunc pellentesque risus dapibus nibh auctor tempor. Nulla neque tortor, feugiat in aliquet eget, tempus eget justo. Praesent vehicula aliquet tellus, ac bibendum tortor ullamcorper sit amet. Pellentesque tempus lacus eget aliquet euismod. Nam quis sapien metus. Nam eu interdum orci. Sed consequat, lectus quis interdum placerat, purus leo venenatis mi, ut ullamcorper dui lorem sit amet nunc. Donec semper suscipit quam eu blandit. Sed quis maximus metus. Nullam efficitur efficitur viverra. Curabitur egestas eu arcu in cursus.

H1

H2

H3

H4

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum dapibus ullamcorper ex, sed congue massa. Duis at fringilla nisi. Aenean eu nibh vitae quam auctor ultrices. Donec consequat mattis viverra. Morbi sed egestas ante. Vivamus ornare nulla sapien. Integer mollis semper egestas. Cras vehicula erat eu ligula commodo vestibulum. Fusce at pulvinar urna, ut iaculis eros. Pellentesque volutpat leo non dui aliquet, sagittis auctor tellus accumsan. Curabitur nibh mauris, placerat sed pulvinar in, ullamcorper non nunc. Praesent id imperdiet lorem.

H5

Curabitur id purus est. Fusce porttitor tortor ut ante volutpat egestas. Quisque imperdiet lobortis justo, ac vulputate eros imperdiet ut. Phasellus erat urna, pulvinar id turpis sit amet, aliquet dictum metus. Fusce et dapibus ipsum, at lacinia purus. Vestibulum euismod lectus quis ex porta, eget elementum elit fermentum. Sed semper convallis urna, at ultrices nibh euismod eu. Cras ultrices sem quis arcu fermentum viverra. Nullam hendrerit venenatis orci, id dictum leo elementum et. Sed mattis facilisis lectus ac laoreet. Nam a turpis mattis, egestas augue eu, faucibus ex. Integer pulvinar ut risus id auctor. Sed in mauris convallis, interdum mi non, sodales lorem. Praesent dignissim libero ligula, eu mattis nibh convallis a. Nunc pulvinar venenatis leo, ac rhoncus eros euismod sed. Quisque vulputate faucibus elit, vitae varius arcu congue et.

Ut maximus felis quis diam accumsan suscipit. Etiam tellus erat, ultrices vitae molestie ut, bibendum id ipsum. Aenean eu dolor posuere, tincidunt libero vel, mattis mauris. Aliquam erat volutpat. Sed sit amet placerat nulla. Mauris diam leo, iaculis eget turpis a, condimentum laoreet ligula. Nunc in odio imperdiet, tincidunt velit in, lacinia urna. Aenean ultricies urna tempor, condimentum sem eget, aliquet sapien.

Ut convallis cursus dictum. In hac habitasse platea dictumst. Ut eleifend eget erat vitae tempor. Nam tempus pulvinar dui, ac auctor augue pharetra nec. Sed magna augue, interdum a gravida ac, lacinia quis erat. Pellentesque fermentum in enim at tempor. Proin suscipit, odio ut lobortis semper, est dolor maximus elit, ac fringilla lorem ex eu mauris.

  • Phasellus vitae elit et dui fermentum ornare. Vestibulum non odio nec nulla accumsan feugiat nec eu nibh. Cras tincidunt sem sed lacinia mollis. Vivamus augue justo, placerat vel euismod vitae, feugiat at sapien. Maecenas sed blandit dolor. Maecenas vel mauris arcu. Morbi id ligula congue, feugiat nisl nec, vulputate purus. Nunc nec aliquet tortor. Maecenas interdum lectus a hendrerit tristique. Ut sit amet feugiat velit.
  • Test
  • Yes
Related Post test

Updated November 17th Related Posts Link to automotive form, business form

Apr 24,2025 by Rathnathilaga.MelapavoorSankaran@experian.com

Unmasking Romance Scams

As Valentine’s Day approaches, hearts will melt, but some will inevitably be broken by romance scams. This season of love creates an opportune moment for scammers to prey on individuals feeling lonely or seeking connection. Financial institutions should take this time to warn customers about the heightened risks and encourage vigilance against fraud. In a tale as heart-wrenching as it is cautionary, a French woman named Anne was conned out of nearly $855,000 in a romance scam that lasted over a year. Believing she was communicating with Hollywood star Brad Pitt; Anne was manipulated by scammers who leveraged AI technology to impersonate the actor convincingly. Personalized messages, fabricated photos, and elaborate lies about financial needs made the scam seem credible. Anne’s story, though extreme, highlights the alarming prevalence and sophistication of romance scams in today’s digital age. According to the Federal Trade Commission (FTC), nearly 70,000 Americans reported romance scams in 2022, with losses totaling $1.3 billion—an average of $4,400 per victim. These scams, which play on victims’ emotions, are becoming increasingly common and devastating, targeting individuals of all ages and backgrounds. Financial institutions have a crucial role in protecting their customers from these schemes. The lifecycle of a romance scam Romance scams follow a consistent pattern: Feigned connection: Scammers create fake profiles on social media or dating platforms using attractive photos and minimal personal details. Building trust: Through lavish compliments, romantic conversations, and fabricated sob stories, scammers forge emotional bonds with their targets. Initial financial request: Once trust is established, the scammer asks for small financial favors, often citing emergencies. Escalation: Requests grow larger, with claims of dire situations such as medical emergencies or legal troubles. Disappearance: After draining the victim’s funds, the scammer vanishes, leaving emotional and financial devastation in their wake. Lloyds Banking Group reports that men made up 52% of romance scam victims in 2023, though women lost more on average (£9,083 vs. £5,145). Individuals aged 55-64 were the most susceptible, while those aged 65-74 faced the largest losses, averaging £13,123 per person. Techniques scammers use Romance scammers are experts in manipulation. Common tactics include: Fabricated sob stories: Claims of illness, injury, or imprisonment. Investment opportunities: Offers to “teach” victims about investing. Military or overseas scenarios: Excuses for avoiding in-person meetings. Gift and delivery scams: Requests for money to cover fake customs fees. How financial institutions can help Banks and financial institutions are on the frontlines of combating romance scams. By leveraging technology and adopting proactive measures, they can intercept fraud before it causes irreparable harm. 1. Customer education and awareness Conduct awareness campaigns to educate clients about common scam tactics. Provide tips on recognizing fake profiles and unsolicited requests. Share real-life stories, like Anne’s, to highlight the risks. 2. Advanced data capture solutions Implement systems that gather and analyze real-time customer data, such as IP addresses, browsing history, and device usage patterns. Use behavioral analytics to detect anomalies in customer actions, such as hesitation or rushed transactions, which may indicate stress or coercion. 3. AI and machine learning Utilize AI-driven tools to analyze vast datasets and identify suspicious patterns. Deploy daily adaptive models to keep up with emerging fraud trends. 4. Real-time fraud interception Establish rules and alerts to flag unusual transactions. Intervene with personalized messages before transfers occur, asking “Do you know and trust this person?” Block transactions if fraud is suspected, ensuring customers’ funds are secure. Collaborating for greater impact Financial institutions cannot combat romance scams alone. Partnerships with social media platforms, AI companies, and law enforcement are essential. Social media companies must shut down fake profiles proactively, while regulatory frameworks should enable banks to share information about at-risk customers. Conclusion Romance scams exploit the most vulnerable aspects of human nature: the desire for love and connection. Stories like Anne’s underscore the emotional and financial toll these scams take on victims. However, with robust technological solutions and proactive measures, financial institutions can play a pivotal role in protecting their customers. By staying ahead of fraud trends and educating clients, banks can ensure that the pursuit of love remains a source of joy, not heartbreak. Learn more

Feb 05,2025 by Alex Lvoff

How Identity Protection for Your Employees Can Reduce Your Data Breach Risk

As data breaches become an ever-growing threat to businesses, the role of employees in maintaining cybersecurity has never been more critical. Did you know that 82% of data breaches involve the human element1 , such as phishing, stolen credentials, or social engineering tactics? These statistics reveal a direct connection between employee identity theft and business vulnerabilities. In this blog, we’ll explore why protecting your employees’ identities is essential to reducing data breach risk, how employee-focused identity protection programs, and specifically employee identity protection, improve both cybersecurity and employee engagement, and how businesses can implement comprehensive solutions to safeguard sensitive data and enhance overall workforce well-being. The Rising Challenge: Data Breaches and Employee Identity Theft The past few years have seen an exponential rise in data breaches. According to the Identity Theft Resource Center, there were 1,571 data compromises in the first half of 2024, impacting more than 1.1 billion individuals – a 490% increase year over year2. A staggering proportion of these breaches originated from compromised employee credentials or phishing attacks. Explore Experian's Employee Benefits Solutions The Link Between Employee Identity Theft and Cybersecurity Risks Phishing and Social EngineeringPhishing attacks remain one of the top strategies used by cybercriminals. These attacks often target employees by exploiting personal information stolen through identity theft. For example, a cybercriminal who gains access to an employee's compromised email or social accounts can use this information to craft realistic phishing messages, tricking them into divulging sensitive company credentials. Compromised Credentials as Entry PointsCompromised employee credentials were responsible for 16% of breaches and were the costliest attack vector, averaging $4.5 million per breach3. When an employee’s identity is stolen, it can give hackers a direct line to your company’s network, jeopardizing sensitive data and infrastructure. The Cost of DowntimeBeyond the financial impact, data breaches disrupt operations, erode customer trust, and harm your brand. For businesses, the average downtime from a breach can last several weeks – time that could otherwise be spent growing revenue and serving clients. Why Businesses Need to Prioritize Employee Identity Protection Protecting employee identities isn’t just a personal benefit – it’s a strategic business decision. Here are three reasons why identity protection for employees is essential to your cybersecurity strategy: 1. Mitigate Human Risk in Cybersecurity Employee mistakes, often resulting from phishing scams or misuse of credentials, are a leading cause of breaches. By equipping employees with identity protection services, businesses can significantly reduce the likelihood of stolen information being exploited by fraudsters and cybercriminals. 2. Boost Employee Engagement and Financial Wellness Providing identity protection as part of an employee benefits package signals that you value your workforce’s security and well-being. Beyond cybersecurity, offering such protections can enhance employee loyalty, reduce stress, and improve productivity. Employers who pair identity protection with financial wellness tools can empower employees to monitor their credit, secure their finances, and protect against fraud, all of which contribute to a more engaged workforce. 3. Enhance Your Brand Reputation A company’s cybersecurity practices are increasingly scrutinized by customers, stakeholders, and regulators. When you demonstrate that you prioritize not just protecting your business, but also safeguarding your employees’ identities, you position your brand as a leader in security and trustworthiness. Practical Strategies to Protect Employee Identities and Reduce Data Breach Risk How can businesses take actionable steps to mitigate risks and protect their employees? Here are some best practices: Offer Comprehensive Identity Protection Solutions A robust identity protection program should include: Real-time monitoring for identity theft Alerts for suspicious activity on personal accounts Data and device protection to protect personal information and devices from identity theft, hacking and other online threats Fraud resolution services for affected employees Credit monitoring and financial wellness tools Leading providers like Experian offer customizable employee benefits packages that provide proactive identity protection, empowering employees to detect and resolve potential risks before they escalate. Invest in Employee Education and Training Cybersecurity is only as strong as your least-informed employee. Provide regular training sessions and provide resources to help employees recognize phishing scams, understand the importance of password hygiene, and learn how to avoid oversharing personal data online. Implement Multi-Factor Authentication (MFA) MFA adds an extra layer of security, requiring employees to verify their identity using multiple credentials before accessing sensitive systems. This can drastically reduce the risk of compromised credentials being misused. Partner with a Trusted Identity Protection Provider Experian’s suite of employee benefits solutions combines identity protection with financial wellness tools, helping your employees stay secure while also boosting their financial confidence. Only Experian can offer these integrated solutions with unparalleled expertise in both identity protection and credit monitoring. Conclusion: Identity Protection is the Cornerstone of Cybersecurity The rising tide of data breaches means that businesses can no longer afford to overlook the role of employee identity in cybersecurity. By prioritizing identity protection for employees, organizations can reduce the risk of costly breaches and also create a safer, more engaged, and financially secure workforce. Ready to protect your employees and your business? Take the next step toward safeguarding your company’s future. Learn more about Experian’s employee benefits solutions to see how identity protection and financial wellness tools can transform your workplace security and employee engagement. Learn more 1 2024 Experian Data Breach Response Guide 2 Identity Theft Resource Center. H1 2024 Data Breach Analysis 3 2023 IBM Cost of a Data Breach Report

Jan 28,2025 by Stefani Wendel

Loading…
Are auto originations running out of gas?

If you attended any of our past credit trends Webinars, you’ve heard me mention time and again how auto originations have been a standout during these times when overall consumer lending has been a challenge.   In fact, total originated auto volumes topped $100B in the third quarter of 2011, a level not seen since mid-2008. But is this growth sustainable?  Since bottoming at the start of 2009, originations have been on a tear for nearly three straight years.  Given that, you might think that auto origination’s best days are behind it.   But these three key factors indicate originations may still have room to run: 1.       The economy Just as it was a factor in declining auto originations during the recession, the economy will drive continued increases in auto sales.  If originations were growing during the challenges of the past couple of years, the expected improvements in the economy in 2012 will surely spur new auto originations. 2.       Current cars are old A recent study by Experian Automotive showed that today’s automobiles on the road have hit an all-time high of 10.6 years of age.  Obviously a result of the recent recession, consumers owning older cars will result in pent up demand for newer and more reliable ones. 3.       Auto lending is more diversified than ever I’m talking diversification in a couple of ways: Auto lending has always catered to a broader credit risk range than other products.  In recent years, lenders have experimented with moving even further into the subprime space.   For example, VantageScore® credit score D consumers now represent 24.4% of all originations vs. 21.2% at the start of 2009.   There is a greater selection of lenders that cater to the auto space.  With additional players like Captives, Credit Unions and even smaller Finance companies competing for new business, consumers have several options to secure a competitively-priced auto loan. With all three variables in motion, auto originations definitely have a formula for continued growth going forward.  Come find out if auto originations do in fact continue to grow in 2012 by signing up for our upcoming Experian-Oliver Wyman credit trends Webinar.  

Feb 24,2012 by Alan Ikemura

Where business models worked, and didn’t, and are most needed now in mortgages

Part II: Where are Models Most Needed Now in Mortgages? (Click here if you missed Part I of this post.) By: John Straka A first important question should always be are all of your models, model uses, and model testing strategies, and your non-model processes, sound and optimal for your business?  But in today’s environment, two areas in mortgage stand out where better models and decision systems are most needed now: mortgage servicing and loan-quality assurance.  I will discuss loan-quality assurance in a future installment. Mortgage servicing and loss mitigation are clearly one area where better models and new decision analytics continue to have a seemingly great potential today to add significant new value.  At the risk of oversimplifying, it is possible that a number of the difficulties and frustrations of mortgage servicers (and regulators) and borrowers in recent years may have been lessened through more efficient automated decision tools and optimization strategies.  And because these problems will continue to persist for quite some time, it is certainly not too late to envision and move now towards an improved future state of mortgage servicing, or to continue to advance your existing new strategic direction by adding to enhancements already underway. Much has been written about the difficulties faced by many mortgage servicers who have been overwhelmed by the demands of many more delinquent and defaulted borrowers and very extensive, evolving government involvements in new programs, performance incentives and standards.  A strategic question on the minds of many executives and others in the industry today seems to be, where is all of this going?  Is there a generally viable strategic direction for mortgage servicers that can help them to emerge from their current issues—perhaps similar to the improved data, standards, modeling, and technologies that allowed the mortgage industry in the 1990s to emerge overall quite successfully from the problems of the late 1980s and early 90s? To review briefly, mortgage industry problems of the early 1990s were less severe, of course—but really not dissimilar to the current environment.  There had been a major home-price correction in California, in New England, and in a number of large metro areas elsewhere.  A “low doc” mortgage era (and other issues) had left Citicorp nearly insolvent, for example, and caused other significant losses on top of the losses generated by the home prices.  A major source of most mortgage funding, the Savings & Loan industry, had largely collapsed, with losses having to be resolved by a special government agency. Statistical mortgage credit scoring and automated underwriting resulted from the improved data, standards, modeling, and technologies that allowed the mortgage industry to recover in the 1990s, allowing mortgages to catch up with the previously established use of this decision technology in cards, autos, etc., thus benefiting the mortgage industry with reduced costs and significant gains in efficiency and risk management.  An important question today is, is there a similar “renaissance,” so to speak, now in the offing or at hand for mortgage servicers?  Despite all of the still ongoing problems? Let me offer here a very simple analogy—with a disclaimer that this is only a basic starting viewpoint, an oversimplification, recognizing that mortgage servicing and loss mitigation is extraordinarily complex in its details, and often seems only to grow more complex by the day (with added constraints and uncertainties piling on). The simple analogy is this: consider your loan-level Net Present Value (NPV) or other key objective of loan-level decisions in servicing and loss mitigation to be analogous to the statistically based mortgage default “Score” of automated underwriting for originations in the 1990s.  Viewed in this way, a simple question stemming from the figure below is:  can you reduce costs and satisfy borrowers and performance standards better by automating and focusing your servicing representatives more, or primarily, on the “Refer” group of borrowers?  A corollary question is can more automated model-based decision engines confidently reduce the costs and achieve added insights and efficiencies in servicing the lowest and highest NPV delinquent borrowers and the Refer range?  Another corollary question is, are new government-driven performance standards helpful or hindering (or even preventing) particular moves toward this type of objective. Is this a generally viable strategic direction for the future (or even the present) of mortgage servicing?  Is it your direction today?  What is your vision for the future of your quality mortgage servicing?

Feb 21,2012 by

Underwriting and Data Requirements/Guidelines

By: Joel Pruis One might consider this topic redundant to the last submission around application requirements and that assessment would be partially true.  As such we are not going to go over the data that has already been collected in the application such as the demographic information of the applicant and guarantors or the business financial information or personal financial information.  That discussion like Elvis has “left the building”. Rather, we will discuss the use of additional data to support the underwriting/decisioning process – namely: Personal/Consumer credit data Business data Scorecards Fraud data Let’s get a given out in the open.  Personal credit data has a high correlation to the payment performance of a small business.  The smaller the business the higher the correlation. “Your honor, counsel requests the above be stipulated in the court records.” “So stipulated for the record.” “Thank you, your honor.” With that put to rest (remember you can always comment on the blog if you have any questions or want to comment on any of the content). The real debate in small business lending revolves around the use of business data. Depth and availability of business data There are some challenges with the gathering and dissemination of business data for use in decisioning – mainly around the history of the data for the individual entity.  More specifically, while a consumer is a single entity and for the vast majority of consumers, one does not bankrupt one entity and then start a new person to refresh their credit history.  No, that is actually bankruptcy and the bankruptcy stays with the individual. Businesses, however, can and in fact do close one entity and start up another.  Restaurants and general contractors come to mind as two examples of individuals who will start up a business, go bankrupt and then start another business under a new entity repeating the cycle multiple times.  While this scenario is a challenge, one cannot refute the need to know how both the individual consumer as well as the individual business is handling its obligations whether they are credit cards, auto loans or trade payables. I once worked for a bank president in a small community bank who challenged me with the following mantra, “It’s not what you know that you don’t know that can hurt you, it is what you think you know but really don’t that hurts you the most.”  I will admit that it took me a while to digest that statement when I first heard it.  Once fully digested the statement was quite insightful.  How many times do we think we know something when we really don’t?  How many times do we act on an assumed understanding but find that our understanding was flawed?  How sound was our decision when we had the flawed understanding?  The same holds true as it relates to the use (or lack thereof) of business information.  We assume that we don’t need business information because it will not tell us much as it relates to our underwriting.  How can the business data be relevant to our underwriting when we know that the business performance is highly correlated to the performance of the owner? Let’s look at a study done a couple of years ago by the Business Information group at Experian.  The data comes from a whitepaper titled “Predicting Risk: the relationship between business and consumer scores” and was published in 2008.  The purpose of the study was to determine which goes bad first, the business or the owner.  At a high level the data shows the following:                 If you're interested, you can download the full study here. So while a majority of time and without any additional segmentation, the business will show signs of stress before the owner. If we look at the data using length of time in business we see some additional insights.               Figure: Distribution of businesses by years in business Interesting distinction is that based upon the age of the business we will see the owner going bad before the business if the business age is 5 years or less.  Once we get beyond the 5 year point the “first bad” moves to the business. In either case, there is no clear case to be made to exclude one data source in favor of the other to predict risk in a small business origination process.  While we can look at see that there is an overall majority where the business goes bad first or that if we have a young small business the owner will more likely go bad first, in either case, there is still a significant population where the inverse is true. Bottom line, gathering both the business and the consumer data allows the financial institution to make a better and more informed decision.  In other words, it prevents us from the damage caused by “thinking we know something when we really don’t”. Coming up next month – Decisioning Strategies. 

Feb 16,2012 by