Loading...

Test

Published: March 1, 2025 by Jon Mostajo, Sirisha Koduri

In this article…

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus at nisl nunc. Sed et nunc a erat vestibulum faucibus. Sed fermentum placerat mi aliquet vulputate. In hac habitasse platea dictumst. Maecenas ante dolor, venenatis vitae neque pulvinar, gravida gravida quam. Phasellus tempor rhoncus ante, ac viverra justo scelerisque at. Sed sollicitudin elit vitae est lobortis luctus. Mauris vel ex at metus cursus vestibulum lobortis cursus quam. Donec egestas cursus ex quis molestie. Mauris vel porttitor sapien. Curabitur tempor velit nulla, in tempor enim lacinia vitae. Sed cursus nunc nec auctor aliquam. Morbi fermentum, nisl nec pulvinar dapibus, lectus justo commodo lectus, eu interdum dolor metus et risus. Vivamus bibendum dolor tellus, ut efficitur nibh porttitor nec.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Maecenas facilisis pellentesque urna, et porta risus ornare id. Morbi augue sem, finibus quis turpis vitae, lobortis malesuada erat. Nullam vehicula rutrum urna et rutrum. Mauris convallis ac quam eget ornare. Nunc pellentesque risus dapibus nibh auctor tempor. Nulla neque tortor, feugiat in aliquet eget, tempus eget justo. Praesent vehicula aliquet tellus, ac bibendum tortor ullamcorper sit amet. Pellentesque tempus lacus eget aliquet euismod. Nam quis sapien metus. Nam eu interdum orci. Sed consequat, lectus quis interdum placerat, purus leo venenatis mi, ut ullamcorper dui lorem sit amet nunc. Donec semper suscipit quam eu blandit. Sed quis maximus metus. Nullam efficitur efficitur viverra. Curabitur egestas eu arcu in cursus.

H1

H2

H3

H4

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum dapibus ullamcorper ex, sed congue massa. Duis at fringilla nisi. Aenean eu nibh vitae quam auctor ultrices. Donec consequat mattis viverra. Morbi sed egestas ante. Vivamus ornare nulla sapien. Integer mollis semper egestas. Cras vehicula erat eu ligula commodo vestibulum. Fusce at pulvinar urna, ut iaculis eros. Pellentesque volutpat leo non dui aliquet, sagittis auctor tellus accumsan. Curabitur nibh mauris, placerat sed pulvinar in, ullamcorper non nunc. Praesent id imperdiet lorem.

H5

Curabitur id purus est. Fusce porttitor tortor ut ante volutpat egestas. Quisque imperdiet lobortis justo, ac vulputate eros imperdiet ut. Phasellus erat urna, pulvinar id turpis sit amet, aliquet dictum metus. Fusce et dapibus ipsum, at lacinia purus. Vestibulum euismod lectus quis ex porta, eget elementum elit fermentum. Sed semper convallis urna, at ultrices nibh euismod eu. Cras ultrices sem quis arcu fermentum viverra. Nullam hendrerit venenatis orci, id dictum leo elementum et. Sed mattis facilisis lectus ac laoreet. Nam a turpis mattis, egestas augue eu, faucibus ex. Integer pulvinar ut risus id auctor. Sed in mauris convallis, interdum mi non, sodales lorem. Praesent dignissim libero ligula, eu mattis nibh convallis a. Nunc pulvinar venenatis leo, ac rhoncus eros euismod sed. Quisque vulputate faucibus elit, vitae varius arcu congue et.

Ut maximus felis quis diam accumsan suscipit. Etiam tellus erat, ultrices vitae molestie ut, bibendum id ipsum. Aenean eu dolor posuere, tincidunt libero vel, mattis mauris. Aliquam erat volutpat. Sed sit amet placerat nulla. Mauris diam leo, iaculis eget turpis a, condimentum laoreet ligula. Nunc in odio imperdiet, tincidunt velit in, lacinia urna. Aenean ultricies urna tempor, condimentum sem eget, aliquet sapien.

Ut convallis cursus dictum. In hac habitasse platea dictumst. Ut eleifend eget erat vitae tempor. Nam tempus pulvinar dui, ac auctor augue pharetra nec. Sed magna augue, interdum a gravida ac, lacinia quis erat. Pellentesque fermentum in enim at tempor. Proin suscipit, odio ut lobortis semper, est dolor maximus elit, ac fringilla lorem ex eu mauris.

  • Phasellus vitae elit et dui fermentum ornare. Vestibulum non odio nec nulla accumsan feugiat nec eu nibh. Cras tincidunt sem sed lacinia mollis. Vivamus augue justo, placerat vel euismod vitae, feugiat at sapien. Maecenas sed blandit dolor. Maecenas vel mauris arcu. Morbi id ligula congue, feugiat nisl nec, vulputate purus. Nunc nec aliquet tortor. Maecenas interdum lectus a hendrerit tristique. Ut sit amet feugiat velit.
  • Test
  • Yes
Related Post test

Updated November 17th Related Posts Link to automotive form, business form

Apr 24,2025 by Rathnathilaga.MelapavoorSankaran@experian.com

Unmasking Romance Scams

As Valentine’s Day approaches, hearts will melt, but some will inevitably be broken by romance scams. This season of love creates an opportune moment for scammers to prey on individuals feeling lonely or seeking connection. Financial institutions should take this time to warn customers about the heightened risks and encourage vigilance against fraud. In a tale as heart-wrenching as it is cautionary, a French woman named Anne was conned out of nearly $855,000 in a romance scam that lasted over a year. Believing she was communicating with Hollywood star Brad Pitt; Anne was manipulated by scammers who leveraged AI technology to impersonate the actor convincingly. Personalized messages, fabricated photos, and elaborate lies about financial needs made the scam seem credible. Anne’s story, though extreme, highlights the alarming prevalence and sophistication of romance scams in today’s digital age. According to the Federal Trade Commission (FTC), nearly 70,000 Americans reported romance scams in 2022, with losses totaling $1.3 billion—an average of $4,400 per victim. These scams, which play on victims’ emotions, are becoming increasingly common and devastating, targeting individuals of all ages and backgrounds. Financial institutions have a crucial role in protecting their customers from these schemes. The lifecycle of a romance scam Romance scams follow a consistent pattern: Feigned connection: Scammers create fake profiles on social media or dating platforms using attractive photos and minimal personal details. Building trust: Through lavish compliments, romantic conversations, and fabricated sob stories, scammers forge emotional bonds with their targets. Initial financial request: Once trust is established, the scammer asks for small financial favors, often citing emergencies. Escalation: Requests grow larger, with claims of dire situations such as medical emergencies or legal troubles. Disappearance: After draining the victim’s funds, the scammer vanishes, leaving emotional and financial devastation in their wake. Lloyds Banking Group reports that men made up 52% of romance scam victims in 2023, though women lost more on average (£9,083 vs. £5,145). Individuals aged 55-64 were the most susceptible, while those aged 65-74 faced the largest losses, averaging £13,123 per person. Techniques scammers use Romance scammers are experts in manipulation. Common tactics include: Fabricated sob stories: Claims of illness, injury, or imprisonment. Investment opportunities: Offers to “teach” victims about investing. Military or overseas scenarios: Excuses for avoiding in-person meetings. Gift and delivery scams: Requests for money to cover fake customs fees. How financial institutions can help Banks and financial institutions are on the frontlines of combating romance scams. By leveraging technology and adopting proactive measures, they can intercept fraud before it causes irreparable harm. 1. Customer education and awareness Conduct awareness campaigns to educate clients about common scam tactics. Provide tips on recognizing fake profiles and unsolicited requests. Share real-life stories, like Anne’s, to highlight the risks. 2. Advanced data capture solutions Implement systems that gather and analyze real-time customer data, such as IP addresses, browsing history, and device usage patterns. Use behavioral analytics to detect anomalies in customer actions, such as hesitation or rushed transactions, which may indicate stress or coercion. 3. AI and machine learning Utilize AI-driven tools to analyze vast datasets and identify suspicious patterns. Deploy daily adaptive models to keep up with emerging fraud trends. 4. Real-time fraud interception Establish rules and alerts to flag unusual transactions. Intervene with personalized messages before transfers occur, asking “Do you know and trust this person?” Block transactions if fraud is suspected, ensuring customers’ funds are secure. Collaborating for greater impact Financial institutions cannot combat romance scams alone. Partnerships with social media platforms, AI companies, and law enforcement are essential. Social media companies must shut down fake profiles proactively, while regulatory frameworks should enable banks to share information about at-risk customers. Conclusion Romance scams exploit the most vulnerable aspects of human nature: the desire for love and connection. Stories like Anne’s underscore the emotional and financial toll these scams take on victims. However, with robust technological solutions and proactive measures, financial institutions can play a pivotal role in protecting their customers. By staying ahead of fraud trends and educating clients, banks can ensure that the pursuit of love remains a source of joy, not heartbreak. Learn more

Feb 05,2025 by Alex Lvoff

How Identity Protection for Your Employees Can Reduce Your Data Breach Risk

As data breaches become an ever-growing threat to businesses, the role of employees in maintaining cybersecurity has never been more critical. Did you know that 82% of data breaches involve the human element1 , such as phishing, stolen credentials, or social engineering tactics? These statistics reveal a direct connection between employee identity theft and business vulnerabilities. In this blog, we’ll explore why protecting your employees’ identities is essential to reducing data breach risk, how employee-focused identity protection programs, and specifically employee identity protection, improve both cybersecurity and employee engagement, and how businesses can implement comprehensive solutions to safeguard sensitive data and enhance overall workforce well-being. The Rising Challenge: Data Breaches and Employee Identity Theft The past few years have seen an exponential rise in data breaches. According to the Identity Theft Resource Center, there were 1,571 data compromises in the first half of 2024, impacting more than 1.1 billion individuals – a 490% increase year over year2. A staggering proportion of these breaches originated from compromised employee credentials or phishing attacks. Explore Experian's Employee Benefits Solutions The Link Between Employee Identity Theft and Cybersecurity Risks Phishing and Social EngineeringPhishing attacks remain one of the top strategies used by cybercriminals. These attacks often target employees by exploiting personal information stolen through identity theft. For example, a cybercriminal who gains access to an employee's compromised email or social accounts can use this information to craft realistic phishing messages, tricking them into divulging sensitive company credentials. Compromised Credentials as Entry PointsCompromised employee credentials were responsible for 16% of breaches and were the costliest attack vector, averaging $4.5 million per breach3. When an employee’s identity is stolen, it can give hackers a direct line to your company’s network, jeopardizing sensitive data and infrastructure. The Cost of DowntimeBeyond the financial impact, data breaches disrupt operations, erode customer trust, and harm your brand. For businesses, the average downtime from a breach can last several weeks – time that could otherwise be spent growing revenue and serving clients. Why Businesses Need to Prioritize Employee Identity Protection Protecting employee identities isn’t just a personal benefit – it’s a strategic business decision. Here are three reasons why identity protection for employees is essential to your cybersecurity strategy: 1. Mitigate Human Risk in Cybersecurity Employee mistakes, often resulting from phishing scams or misuse of credentials, are a leading cause of breaches. By equipping employees with identity protection services, businesses can significantly reduce the likelihood of stolen information being exploited by fraudsters and cybercriminals. 2. Boost Employee Engagement and Financial Wellness Providing identity protection as part of an employee benefits package signals that you value your workforce’s security and well-being. Beyond cybersecurity, offering such protections can enhance employee loyalty, reduce stress, and improve productivity. Employers who pair identity protection with financial wellness tools can empower employees to monitor their credit, secure their finances, and protect against fraud, all of which contribute to a more engaged workforce. 3. Enhance Your Brand Reputation A company’s cybersecurity practices are increasingly scrutinized by customers, stakeholders, and regulators. When you demonstrate that you prioritize not just protecting your business, but also safeguarding your employees’ identities, you position your brand as a leader in security and trustworthiness. Practical Strategies to Protect Employee Identities and Reduce Data Breach Risk How can businesses take actionable steps to mitigate risks and protect their employees? Here are some best practices: Offer Comprehensive Identity Protection Solutions A robust identity protection program should include: Real-time monitoring for identity theft Alerts for suspicious activity on personal accounts Data and device protection to protect personal information and devices from identity theft, hacking and other online threats Fraud resolution services for affected employees Credit monitoring and financial wellness tools Leading providers like Experian offer customizable employee benefits packages that provide proactive identity protection, empowering employees to detect and resolve potential risks before they escalate. Invest in Employee Education and Training Cybersecurity is only as strong as your least-informed employee. Provide regular training sessions and provide resources to help employees recognize phishing scams, understand the importance of password hygiene, and learn how to avoid oversharing personal data online. Implement Multi-Factor Authentication (MFA) MFA adds an extra layer of security, requiring employees to verify their identity using multiple credentials before accessing sensitive systems. This can drastically reduce the risk of compromised credentials being misused. Partner with a Trusted Identity Protection Provider Experian’s suite of employee benefits solutions combines identity protection with financial wellness tools, helping your employees stay secure while also boosting their financial confidence. Only Experian can offer these integrated solutions with unparalleled expertise in both identity protection and credit monitoring. Conclusion: Identity Protection is the Cornerstone of Cybersecurity The rising tide of data breaches means that businesses can no longer afford to overlook the role of employee identity in cybersecurity. By prioritizing identity protection for employees, organizations can reduce the risk of costly breaches and also create a safer, more engaged, and financially secure workforce. Ready to protect your employees and your business? Take the next step toward safeguarding your company’s future. Learn more about Experian’s employee benefits solutions to see how identity protection and financial wellness tools can transform your workplace security and employee engagement. Learn more 1 2024 Experian Data Breach Response Guide 2 Identity Theft Resource Center. H1 2024 Data Breach Analysis 3 2023 IBM Cost of a Data Breach Report

Jan 28,2025 by Stefani Wendel

Loading…
The 5 Basic (but Important) Questions Banks Need Answered Regarding FFIEC Regulatory Compliance

This is second question in our five-part series on the FFIEC guidance and what it means Internet banking.  If you missed the first question, don't worry, you can still go back.  Check back each day this week for more Q&A on what you need to know and how to prepare for the January 2012 deadline. Question: What does “multi-factor” authentication actually mean?    “Multi- Factor” authentication refers to the combination of different security requirements that would be unlikely to be compromised at the same time. A simple example of multi-factor authentication is the use of a debit card at an ATM machine.   The plastic debit card is an item that you must physically possess to withdraw cash, but the transaction also requires the PIN number to complete the transaction. The card is one factor, the PIN is a second. The two combine to deliver a multi-factor authentication. Even if the customer loses their card, it (theoretically) can’t be used to withdraw cash from the ATM machine without the PIN. _____________ Look for part three of our five-part series tomorrow.

Nov 15,2011 by

The 5 Basic (but Important) Questions Banks Need Answered Regarding FFIEC Regulatory Compliance

This first question in our five-part series on the FFIEC guidance and what it means Internet banking.  Check back each day this week for more Q&A on what you need to know and how to prepare for the January 2012 deadline. Question: What does “layered security” actually mean?   “Layered” security refers to the arrangement of fraud tools in a sequential fashion. A layered approach starts with the most simple, benign and unobtrusive methods of authentication and progresses toward more stringent controls as the activity unfolds and the risk increases. Consider a customer who logs onto an on-line banking session to execute a wire transfer of funds to another account. The layers of security applied to this activity might resemble: 1.       Layer One- Account log-in. Security = valid ID and Password must be provided 2.       Layer Two- Wire transfer request. Security= IP verification/confirmation that this PC has been used to access this account previously. 3.       Layer Three- Destination Account provided that has not been used to receive wire transfer funds in the past. Security= Knowledge Based Authentication Layered security provides an organization with the ability to handle simple customer requests with minimal security, and to strengthen security as risks dictate.  A layered approach enables the vast majority of low risk transactions to be completed without unnecessary interference while the high-risk transactions are sufficiently verified. _____________ Look for part two of our five-part series tomorrow. 

Nov 14,2011 by

Isn’t the Zip Code Level Good Enough—Why Look at More Granular Housing Market Data?

By: John Straka For many purposes, national home-price averages, MSA figures, or even zip code data cannot adequately gauge local housing markets. The higher the level of the aggregate, the less it reflects the true variety and constant change in prices and conditions across local neighborhood home markets. Financial institutions, investors, and regulators that seek out and learn how to use local housing market data will generally be much closer to true housing markets. When houses are not good substitutes from the viewpoint of most market participants, they are not part of the same housing market.  Different sizes and types and ages of homes, for example, may be in the same county, zip code, block, or even right next door to each other, but they are generally not in the same housing market when they are not good substitutes.  This highlights the importance of starting with detailed granular information on local-neighborhood home markets and homes.  To be sure, greater granularity in neighborhood home-market evaluation requires analysts and modelers to deal with much more data on literally hundreds of thousands of neighborhoods in the U.S. It is fair to ask if zip-code level data, for example, might not be generally sufficient. Most housing analysts and portfolio modelers, in fact, have traditionally assumed this, believing that reasonable insights can be gleaned from zip code, county-level, or even MSA data. But this is fully adequate, strictly speaking, only if neighborhood home markets and outcomes are homogenous—at least reasonably so—within the level of aggregation used. Unfortunately, even at zip-code level, the data suggests otherwise.  Examples All of the home-price and home-valuation data for this report was supplied by Collateral Analytics. I have focused on zip7s, i.e. zip+2s, which are a more granular neighborhood measure than zip codes. A Hodrick-Prescott (H-P) Filter was applied by Collateral Analytics to the raw home-price data in order to attenuate short-term variation and isolate the six-year trends. But as we’ll see this dampening still leaves an unrealistically high range of variation within zip codes, for reasons discussed below. Fortunately there is an easy way to control for this, which we’ll apply for final estimates of the range of within-zip variation in home-price outcomes.  The three charts below show the H-P filtered 2005-2011 percent changes in home-price per square foot of living area within three different types of zip codes in San Diego county. Within the first type of zip code, 92319 in this case, the home-price changes in recent years have been relatively homogenous, with a range of -56% to -40% home-price change across the zip7s (i.e., zip+2s) in 92319. But the second type of zip code, illustrated by 92078, is more typical. In this type of case the home-price changes across the zip7s have varied much more. The 2055-2011 zip7 %chg in home prices within 92078 have varied by over 40 percentage points, from -51% to -10%. In the third type of zip code, less frequent but surprisingly common, the home-price changes across the zip7s have had a truly remarkable range of variation. This is illustrated here by zip code 92024 in which the home price outcomes have varied from -51% to +21%, or a 71 percentage point range of difference—and this is not the zip code with the maximum range of variation observed! All of the San Diego County zip codes are summarized in the bar chart below. Nearly two-thirds of the zip codes, 65%, have more than 30 percentage points within-zip difference in the 2005-2011 zip7 %changes in home prices. 40% have more than a 40 percentage point range of different home-price outcomes, 23% have more than a 50 percentage point range, and 13% have more than a 70 percentage point range of differences. The average range of the zip7 within-zip code differences is a 37 percentage point median, 41 percentage-point mean. These high numbers are surprising, and are most likely unrealistically high. Summary of Within-Zip (Zip+2 level) Ranges of Variation in Home-Price Changes in San Diego: Percentage of Zips by Range Across Zip+2s in Home Price/Living Area %Change 2005-2011 Controlling for Factors Inflating the Range of Variation Such sizable differences within a typical single zip code clearly suggest materially different neighborhood home markets. While this qualitative conclusion is supported further below, the magnitudes of the within-zip variation in home-price changes shown above are quite likely inflated. There is a tendency for a limited number of observations in various zip7s to create statistical “noise” outliers, and the inclusion of distressed property sales here can create further outliers, with cases of both limited observations and distress sales particularly capable of creating more negative outliers that are not representative of the true price changes for most homes and their true range of variation within zip codes.  (My earlier blog on June 29th discussed the biases from including distressed property sales while trying to gauge general price trends for most properties.) Fortunately, I’ve been able to access a very convenient way to control for these factors by using the zip7 averages of Collateral Analytics’ AVM (Automated Valuation Model) values rather than simply the home price data summarized above. These industry-leading AVM home valuations have been designed, in part, to filter out statistical noise problems.  The bar chart below shows the still significant zip7 ranges within San Diego County zip codes using the AVM values, but the distribution is now shifted considerably, and more realistically, to a much smaller share of the zip codes with remarkably high zip7 variation. Compared with the chart above, now just 1% of the zips have a zip7 range greater than 60 percentage points, 5% greater than 50, and 11% greater than 40, but there are still 36% greater than 30. To be sure, this distribution, and the average range of zip7 differences—which is now a 25 percentage-point median, 26 percent age-point mean—do show a considerable range of local home market variation within zip codes. It seems fair to conclude that the typical zip code does not contain the uniformity in home price outcomes that most housing analysts and modelers have tended to simply assume. The difference between the effects on consumer wealth and behavior of a 10% home price decline, for example, vs. a 35 to 50% decline, would seem to be sizable in most cases. This kind of difference within a zip code is not at all unusual in these data. How About a Different Type of Urban Area—More Uniform? It might be thought that the diversity of topography, etc., across San Diego County (from the sea to the mountains) makes its variation of home market outcomes within zip codes unusually high. To take a quick gauge of this hypothesis, let’s look at a more topographically uniform urban area: Columbus, Ohio. When I informally polled some of my colleagues asking what their prior belief would be about the within-zip code variation in home price outcomes in Columbus vs. San Diego County, there was unanimous agreement with my prior belief. We all expected greater within-zip uniformity in Columbus. I find it interesting to report here that we were wrong. Both the H-P filtered raw home-price information and the AVM values from Collateral Analytics show relatively greater zip7 variation within Columbus (Franklin County) zip codes than in San Diego County.  The bar chart below shows the best-filtered, most attenuated results,  the AVM values. 5% of the Columbus zips have a zip7 range greater than 70 percentage points, 8% greater than 60, 23% greater than 50, 35% greater than 40, and 65% greater than 30. The average range of zip7 within-zip code differences in Columbus is a 35 percentage point median, 38 percentage-point mean. Conclusion These data seem consistent with what experienced appraisers and real estate agents have been trying to tell economists and other housing analysts, investors, and financial institutions and policymakers for quite a long time. Although they have quite reasonable uses for aggregate time-series and forecasting purposes, more aggregate-data based models of housing markets actually miss a lot of the very real and material variation in local neighborhood housing markets.  For home valuation and many other purposes, even models that use data which gets down to the zip code level of aggregation—which most analysts have assumed to be sufficiently disaggregated—are not really good enough. These models are not as good as they can or should be. These facts are indicative of the greater challenge to properly define local housing markets empirically, in such a way that better data, models, and analytics can be more rapidly developed and deployed for greater profitability, and for sooner and more sustainable housing market recoveries. I thank Michael Sklarz for providing the data for this report and for comments, and I thank Stacy Schulman for assistance in this post.

Oct 07,2011 by