
In this article…
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus at nisl nunc. Sed et nunc a erat vestibulum faucibus. Sed fermentum placerat mi aliquet vulputate. In hac habitasse platea dictumst. Maecenas ante dolor, venenatis vitae neque pulvinar, gravida gravida quam. Phasellus tempor rhoncus ante, ac viverra justo scelerisque at. Sed sollicitudin elit vitae est lobortis luctus. Mauris vel ex at metus cursus vestibulum lobortis cursus quam. Donec egestas cursus ex quis molestie. Mauris vel porttitor sapien. Curabitur tempor velit nulla, in tempor enim lacinia vitae. Sed cursus nunc nec auctor aliquam. Morbi fermentum, nisl nec pulvinar dapibus, lectus justo commodo lectus, eu interdum dolor metus et risus. Vivamus bibendum dolor tellus, ut efficitur nibh porttitor nec.
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Maecenas facilisis pellentesque urna, et porta risus ornare id. Morbi augue sem, finibus quis turpis vitae, lobortis malesuada erat. Nullam vehicula rutrum urna et rutrum. Mauris convallis ac quam eget ornare. Nunc pellentesque risus dapibus nibh auctor tempor. Nulla neque tortor, feugiat in aliquet eget, tempus eget justo. Praesent vehicula aliquet tellus, ac bibendum tortor ullamcorper sit amet. Pellentesque tempus lacus eget aliquet euismod. Nam quis sapien metus. Nam eu interdum orci. Sed consequat, lectus quis interdum placerat, purus leo venenatis mi, ut ullamcorper dui lorem sit amet nunc. Donec semper suscipit quam eu blandit. Sed quis maximus metus. Nullam efficitur efficitur viverra. Curabitur egestas eu arcu in cursus.
H1
H2
H3
H4
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum dapibus ullamcorper ex, sed congue massa. Duis at fringilla nisi. Aenean eu nibh vitae quam auctor ultrices. Donec consequat mattis viverra. Morbi sed egestas ante. Vivamus ornare nulla sapien. Integer mollis semper egestas. Cras vehicula erat eu ligula commodo vestibulum. Fusce at pulvinar urna, ut iaculis eros. Pellentesque volutpat leo non dui aliquet, sagittis auctor tellus accumsan. Curabitur nibh mauris, placerat sed pulvinar in, ullamcorper non nunc. Praesent id imperdiet lorem.
H5
Curabitur id purus est. Fusce porttitor tortor ut ante volutpat egestas. Quisque imperdiet lobortis justo, ac vulputate eros imperdiet ut. Phasellus erat urna, pulvinar id turpis sit amet, aliquet dictum metus. Fusce et dapibus ipsum, at lacinia purus. Vestibulum euismod lectus quis ex porta, eget elementum elit fermentum. Sed semper convallis urna, at ultrices nibh euismod eu. Cras ultrices sem quis arcu fermentum viverra. Nullam hendrerit venenatis orci, id dictum leo elementum et. Sed mattis facilisis lectus ac laoreet. Nam a turpis mattis, egestas augue eu, faucibus ex. Integer pulvinar ut risus id auctor. Sed in mauris convallis, interdum mi non, sodales lorem. Praesent dignissim libero ligula, eu mattis nibh convallis a. Nunc pulvinar venenatis leo, ac rhoncus eros euismod sed. Quisque vulputate faucibus elit, vitae varius arcu congue et.
Ut convallis cursus dictum. In hac habitasse platea dictumst. Ut eleifend eget erat vitae tempor. Nam tempus pulvinar dui, ac auctor augue pharetra nec. Sed magna augue, interdum a gravida ac, lacinia quis erat. Pellentesque fermentum in enim at tempor. Proin suscipit, odio ut lobortis semper, est dolor maximus elit, ac fringilla lorem ex eu mauris.
- Phasellus vitae elit et dui fermentum ornare. Vestibulum non odio nec nulla accumsan feugiat nec eu nibh. Cras tincidunt sem sed lacinia mollis. Vivamus augue justo, placerat vel euismod vitae, feugiat at sapien. Maecenas sed blandit dolor. Maecenas vel mauris arcu. Morbi id ligula congue, feugiat nisl nec, vulputate purus. Nunc nec aliquet tortor. Maecenas interdum lectus a hendrerit tristique. Ut sit amet feugiat velit.
- Test
- Yes

Recent findings on vintage analysis Source: Experian-Oliver Wyman Market Intelligence Reports Analyzing recent vintage analysis provides insights gleaned from cursory review Analyzing recent trends from vintages published in the Experian-Oliver Wyman Market Intelligence Reports, there are numerous insights that can be gleaned from just a cursory review of the results. Mortgage vintage analysis trends As noted in an earlier posting, recent mortgage vintage analysis' show a broad range of behaviors between more recent vintages and older, more established vintages that were originated before the significant run-up of housing prices seen in the middle of the decade. The 30+ delinquency levels for mortgage vintages in 2005, 2006, and 2007 approach and in two cases exceed 10 percent of trades in the last 12 months of performance, and have spiked from historical trends, beginning almost immediately after origination. On the other end of the spectrum, the vintages from 2003 and 2002 have barely approached or exceeded 5 percent for the last 6 or 7 years. Bandcard vintage analysis trends As one would expect, the 30+ delinquency trends demonstrated within bankcard vintage analysis are vastly different from the trends of mortgage vintages. Firstly, card delinquencies show a clear seasonal trend, with a more consistent yearly pattern evident in all vintages, resulting from the revolving structure of the product. The most interesting trends within the card vintages do show that the more recent vintages, 2005 to 2008, display higher 30+ delinquency levels, especially the Q2 2007 vintage, which is far and away the underperformer of the group. Within each vintage pool, an analysis can extend into the risk distribution and details of the portfolio and further segment the pool by credit score, specifically the VantageScore® credit score. In other words, the loans in this pool are only for the most creditworthy customers at the time of origination. The noticeable trend is that while these consumers were largely resistant to deteriorating economic conditions, each vintage segment has seen a spike in the most recent 9-12 months. Given that these consumers tend to have the highest limits and lowest utilization of any VantageScore® credit score band, this trend encourages further account management consideration and raises flags about overall bankcard performance in coming months. Even a basic review of vintage analysis pools and the subsequent analysis opportunities that result from this data can be extremely useful. This vintage analysis can add a new perspective to risk management, supplementing more established analysis techniques, and further enhancing the ability to see the risk within the risk. Purchase a complete picture of consumer credit trends from Experian’s database of over 230 million consumers with the Market Intelligence Brief.

As I wrote in my previous posting, a key Red Flags Rule challenge facing many institutions is one that manages the number of referrals generated from the detection of Red Flags conditions. The big ticket item in referral generation is the address mismatch condition. Identity Theft Prevention Program I’ve blogged previously on the subject of risk-based authentication and risk-based pricing, so I won’t rehash that information. What I will suggest, however, is that those institutions who now have an operational Identity Theft Prevention Program (if you don’t, I’d hurry up) should continue to explore the use of alternate data sources, analytics and additional authentication tools (such as knowledge-based authentication) as a way to detect Red Flags conditions and reconcile them all within the same real-time transaction. Referral rates Referral rates stemming from address mismatches (a key component of the Red Flags Rule high risk conditions) can approach or even surpass 30 percent. That is a lot. The good news is that there are tools which employ additional data sources beyond a credit profile to “find” that positive address match. The use of alternate data sources can often clear the majority of these initial mismatches, leaving the remaining transactions for treatment with analytics and knowledge-based authentication and Identity Theft Prevention Program. Whatever “referral management” process you have in place today, I’d suggest exploring risk-based authentication tools that allow you to keep the vast majority of those referrals out of the hands of live agents, and distanced from the need to put your customers through the authentication wringer. In the current marketplace, there are many services that allow you to avoid high referral costs and risks to customer experience. Of course, we think ours are pretty good.

By: Wendy Greenawalt In the last installment of my three part series dispelling credit attribute myths, we’ll discuss the myth that the lift achieved by utilizing new attributes is minimal, so it is not worth the effort of evaluating and/or implementing new credit attributes. First, evaluating accuracy and efficiency of credit attributes is hard to measure. Experian data experts are some of the best in the business and, in this edition, we will discuss some of the methods Experian uses to evaluate attribute performance. When considering any new attributes, the first method we use to validate statistical performance is to complete a statistical head-to-head comparison. This method incorporates the use of KS (Kolmogorov–Smirnov statistic), Gini coefficient, worst-scoring capture rate or odds ratio when comparing two samples. Once completed, we implement an established standard process to measure value from different outcomes in an automated and consistent format. While this process may be time and labor intensive, the reward can be found in the financial savings that can be obtained by identifying the right segments, including: • Risk models that better identify “bad” accounts and minimizing losses • Marketing models that improve targeting while maximizing campaign dollars spent • Collections models that enhance identification of recoverable accounts leading to more recovered dollars with lower fixed costs Credit attributes Recently, Experian conducted a similar exercise and found that an improvement of 2-to-22 percent in risk prediction can be achieved through the implementation of new attributes. When these metrics are applied to a portfolio where several hundred bad accounts are now captured, the resulting savings can add up quickly (500 accounts with average loss rate of $3,000 = $1.5M potential savings). These savings over time more than justify the cost of evaluating and implementing new credit attributes.


