In this article…

Technology is pushing the boundaries of commerce like never before. Artificial intelligence (AI) is one of the primary driving technologies at the forefront of the commerce evolution, using advanced algorithms to revolutionize marketing and personalize customer experiences. As of 2024, AI adoption in e-commerce is skyrocketing, with 84% of brands already using it or gearing up to do so.
This article explores the AI revolution coming to commerce, focusing on what makes AI a driving force for e-commerce in particular, and the ways it’s reshaping how businesses engage with consumers.
Understanding the AI revolution in commerce
AI is quickly reshaping commerce as we know it by democratizing access to sophisticated tools once reserved for large corporations, breaking down functional silos within organizations, and integrating data from multiple sources to achieve deeper customer understanding. It’s paving the way for a future where every brand interaction is uniquely crafted for the individual, powered by AI systems that anticipate preferences proactively.
AI is a broad term that encompasses:
- Data mining: The gathering of current and historical data on which to base predictions
- Natural language processing (NLP): The interpretation of human language by computers
- Machine learning: The use of algorithms to learn from past experiences or examples to enhance data understanding
The capabilities of AI have significantly matured into powerful tools that can improve operational efficiency and boost sales, even for smaller businesses. They have also fundamentally changed how businesses interact with customers and handle operations. As AI continues to develop, it has the potential to provide even more seamless, personalized, and ethically informed commerce experiences and establish new benchmarks for engagement and efficiency in the marketplace.
Four benefits of the AI revolution coming to commerce
Major commerce players like Amazon have benefited from AI and related technologies for a while. Through machine learning, they’ve optimized logistics, curated their product selection, and improved the user experience. As this technology quickly expands, businesses have unlimited opportunities to see the same efficiency, growth, and customer satisfaction as Amazon. Here are four primary benefits of AI adoption in commerce.
1. Data-driven decision making
AI gives businesses powerful tools to analyze large amounts of data more quickly and accurately than a person. Through advanced algorithms and machine learning, AI can sift through historical sales data, customer behavior patterns, and market trends to uncover insights and suggest actions that might not be immediately obvious to human analysts. By transforming raw data into actionable insights, AI empowers businesses to make more informed decisions, reduce risks, and capitalize on opportunities.
As a real-world example, Foxconn, the largest electronics contract manufacturer worldwide, worked with Amazon Machine Learning Solutions Lab to implement AI-enhanced business analytics for more accurate forecasting. This move improved forecasting accuracy by 8%, saved $533,000 annually, reduced labor waste, and improved customer satisfaction through data-driven decisions.
2. A better customer experience
AI is set to make customer interactions smoother, faster, and more personalized by recommending products based on preferences and behaviors, making it easier for customers to find what they need.
When consumers visit an online store, AI also provides instantaneous help via a chatbot that knows their order history and preferences. These AI-powered assistants offer real-time help like a knowledgeable store clerk. They give the appearance of higher-touch support and can answer basic questions at any hour, provide personalized product recommendations, and even troubleshoot issues. Chatbots free up human customer service agents for more complicated matters, and these agents can then use AI to obtain relevant information and suggestions for the customer during an interaction.
3. Personalized marketing
Data-driven personalization of the customer journey has been shown to generate up to eight times the ROI, as data shows 71% of consumers now expect personalized brand interactions. Until AI came around, personalization at scale was complex to achieve. Now, gathering and processing data about a customer’s shopping experience is easier than ever based on lookalike customers and past behavior.
Many businesses have adopted AI to glean deeper insights into purchase history, web browsing, and social media interactions to drive better segmentation and targeting. With AI, advertisers can analyze behavioral and demographic data to suggest products someone is likely to love. Consumers can now browse many of their favorite online stores and see product recommendations that perfectly match their tastes and needs.
AI can also offer special discounts based on purchasing habits, and send personalized emails with products and content that interest customers to make their shopping experience more engaging and relevant. This personalization helps businesses forge stronger customer relationships.
Personalization across digital storefronts
Retail media involves placing advertisements within a retailer’s website, app, or other digital platform to help brands target consumers based on their behavior and preferences within that environment. Retail media networks (RMNs) expand this capability across multiple retail platforms to create seamless advertising opportunities throughout the customer journey. Integrating AI into RMNs can improve personalization across digital storefronts with personalized, relevant ads and custom offers in real time that improve the customer experience.
4. Operational efficiency
AI can also be beneficial on the back end, enabling more efficient resource allocation, pricing optimization, efficiency, and productivity.
Customers can be frustrated when they visit a store for a specific product only to find it out of stock or unavailable in a particular size. With AI, these situations can be prevented through algorithms that forecast demand for certain items. Retailers like Amazon and Walmart both use AI to predict demand, with Walmart even tracking inventory in real time so managers can restock items as soon as they run out.
AI can automate and streamline operational tasks to help businesses run smoother, faster, and more cost-effective operations. It can:
- Offload tedious data entry, scheduling, and order processing tasks for greater fulfillment accuracy.
- Analyze historical data and market trends, predicting demand to help businesses optimize inventory, reduce waste, track online and in-store sales, and prevent shortages.
- Forecast demand levels, transit times, and shipment delays to make better predictions about logistics and supply chains.
- Improve data quality using machine learning algorithms that find and correct product information errors, duplicates, and inconsistencies.
- Adjust prices based on competitor pricing, seasonal fluctuations, and market conditions to maximize profits.
- Pinpoint bottlenecks, identify issues before they escalate, and provide improvements for suggestions.
Future trends and predictions
If you want to stay ahead in e-commerce, it’s just as important to know what’s coming as it is to understand where things are today. Here are some of the trends expected to shape the rest of 2024 and beyond.
Conversational commerce
Conversational commerce allows real-time, two-way communication through AI-based text and voice assistants, social messaging apps, and chatbots. Generative AI advancements may soon enable more seamless, personalized interactions between customers and online retailers. This technology can improve customer engagement and satisfaction while providing helpful insights into preferences and behaviors for better personalization and targeting.
Delivery optimization
AI-driven delivery optimization uses AI to predict ideal routes for each individual delivery, boosting efficiency, reducing costs, promoting sustainability, and improving customer satisfaction throughout the delivery process.
Visual search
AI-driven visual search is quickly improving in accuracy, speed, and contextual understanding. Future developments may integrate seamlessly with augmented reality (AR) so shoppers can search for products by pointing their devices at physical objects. Social media and e-commerce platforms may soon incorporate visual search more prominently, allowing users to find products directly from images.
AI content creation
AI is already automating and optimizing aspects of content production:
- Algorithms can generate product descriptions, blog posts, and social media captions personalized to specific customer segments.
- AI tools also enable the creation of high-quality visuals and videos.
- NLP advancements ensure content is compelling and grammatically correct.
- AI-driven content strategies analyze consumer behavior and refine messaging to meet changing preferences and trends.
This automation speeds up content creation while freeing resources for strategic planning and customer interaction.
IoT integration
Integrating AI with Internet of Things (IoT) devices could help make the ecosystem more interconnected in the future. AI algorithms can use data from IoT devices like smart appliances, wearables, and sensors to gather real-time insights into consumer behavior, preferences, and product usage patterns. This data enables personalized marketing strategies, predictive maintenance for products, and optimized inventory management. AI-driven IoT data analytics can also streamline supply chain operations to reduce costs and inefficiencies.
Fraud detection and security
There will likely be an increased focus on the ethical use of AI and data privacy regulations to strengthen consumer trust and transparency. AI-powered systems will get better at detecting and preventing fraud in e-commerce transactions, which will heighten security measures for both businesses and consumers.
Chart the future of commerce with Experian
AI has changed how marketers approach e-commerce in 2024. With AI-driven analytics and predictive capabilities, marketers can extract deeper insights from extensive data sets to gain a clearer understanding of consumer behavior. This enables refined segmentation, precise targeting, and real-time customization of messages and content to fit individual preferences.
Beyond insights, AI automates routine tasks like ad placement, content creation, and customer service responses, freeing marketers to concentrate on strategic planning and creativity. Through machine learning, marketers can predict trends, optimize budgets, and fine-tune strategies faster and more accurately than ever. The time to embrace AI is now.
At Experian, we’re here to help you make more data-driven decisions, deliver more relevant content, and reach the right audience at the right time. Using AI in your commerce marketing strategy with our Consumer View and Consumer Sync solutions can help you stay competitive with effective, engaging campaigns.
Contact us to learn how we can empower your commerce advertising strategy today.
Latest posts

Year after year, CES signals where marketing is headed next. In 2026, the message was clear. Progress comes from connecting data, intelligence, and outcomes with discipline, not spectacle. Across AI, programmatic media, and measurement, the same priorities surfaced again and again. Under the bright lights of Las Vegas, three themes cut through, and each one pointed to a future where data, intelligence, and outcomes move in lockstep. Here are the three themes that defined CES 2026. 1. Agentic AI proved that it’s only as good as its data inputs AI was once again the star of the show. At CES 2026, marketers focused less on demos and more on proof that AI improves decisions, reduces friction, and drives outcomes. Every credible use case traced back to accurate, privacy-first data. What changed at CES was how that intelligence is being applied. Agentic AI systems designed to act autonomously are moving beyond insights and into execution. From media buying to optimization, these agents are increasingly expected to make decisions at speed and scale. That shift raises the stakes for data quality. When AI is operating campaigns, not just informing them, accuracy and privacy are non-negotiable. Without accurate, privacy compliant data, AI agents struggle to reflect real behavior or support responsible personalization. A reliable, privacy-first data foundation is what turns AI from an interesting experiment into an operational advantage. That advantage gets even stronger when it’s anchored in an identity graph that understands people and households across channels. When identity and intelligence move together, AI becomes more accurate, accountable, and effective at driving outcomes. In an AI first world, the strongest signal isn't scale. It's data quality. 2. Curation goes mainstream Curation is no longer experimental. At CES, it showed up as an mandated capability for buyers and sellers navigating fragmented signals and complex supply paths. Marketers want intentional media buys they can explain, defend, and repeat. AI is accelerating this shift. As AI systems take on more responsibility for planning, packaging, and optimization, curation provides the guardrails. It defines what “good” looks like (premium supply, trusted data, and clear performance goals), and allows AI to operate within those constraints driving the optimal outcomes for marketers. Rather than maximizing inventory access, curation prioritizes control, transparency, and performance. Buyers want premium supply aligned to specific goals. Sellers want clearer paths to demand. They can play the odds or own the outcome. When data leads, they own it. When curation is powered by high-fidelity audiences and a connected identity framework, it becomes even stronger. That’s what allows curated deals to deliver clarity, confidence, and repeatable performance. This shift reflects a broader move away from probability-based buying toward outcome ownership, where AI-driven systems are measured not on activity, but on results. 3. Activation and measurement finally shared the same stage Activation and measurement are now coming together around shared data and identity. CES 2026 marked a turning point where closing the loop felt achievable, not aspirational. Both the buy- and sell-sides face pressure to show that media investment drives outcomes. Agentic AI was a quiet driver of this optimism. As AI agents increasingly manage activation decisions in real time, marketers need measurement systems that can keep up. That requires a shared data and identity foundation. One that allows AI-driven actions to be evaluated against outcomes consistently, across channels and partners. "The companies leading in alternative data aren't just optimizing for growth, they're setting a new standard for inclusion, precision and responsible lending." – Ashley Knight, SVP of Product Management, Experian Achieving that requires a consistent identity spine that connects planning, activation, and outcomes across channels. And that spine is strongest when it’s built on accurate, privacy-first data and audiences that understand people and households. That connection allows marketers to move beyond proxy metrics and evaluate performance based on tangible results. When campaigns and measurement rely on the same data foundation, AI driven platforms can optimize toward outcomes such as new customers, account growth, or in-store activity, not just delivery metrics. That’s the connective layer that turns disconnected touchpoints into a measurable, outcomes-based system. The takeaway CES made one thing clear: agentic AI is moving marketing from intention to execution. But only for teams with the right foundation. AI is maturing, but only for teams with accurate, connected, privacy-first data that AI agents can act on responsibly. Curation is scaling, giving both humans and AI systems clearer paths to quality, control, and differentiation. Activation and measurement are aligning, allowing AI-driven decisions to be judged on outcomes, not assumptions. We’re building for that world today. One where agentic AI operates on a trusted data and identity foundation, curation defines the rules, and outcomes determine success. With the right foundation and the deep data inputs, you can move faster, reduce risk, and let intelligence (human and artificial) work together to deliver results that last long after the neon lights fade.

Remember when “6-7” was all over your feed and no one really knew why, but somehow everyone got it? In 2025, the internet proved that connection doesn’t always make sense — at least not at first. The “6-7” meme was random, ridiculous, and everywhere. It spread because it felt connected; an inside joke everyone could share. Marketing in 2026 will have its own 6-7 moment. Experian’s 2026 Digital trends and predictions report explores how 2026 will be defined by connection: between activation and measurement, data and AI, platforms and outcomes. After years of fragmentation, the industry is finally unifying around shared foundations: data accuracy, identity resilience, and measurable performance. Here are three connections to watch for in 2026. 1. AI is only as good as its data foundation AI’s performance depends on the quality, recency, and integrity of its inputs. In 2026, marketers will recognize that the differentiator is not the algorithm itself but the data that informs it. As AI becomes embedded into workflows (from audience discovery to media optimization) accurate identity and privacy-safe data become essential. Why it matters Good data fuels responsible automation, predictive insight, and personalization that feels human. Without it, even the most advanced models will simply automate bad decisions faster. What actions should marketers take to strengthen their data foundation? To make AI adaptive, ethical, and aligned with real-world context, marketers need to strengthen the data foundation beneath it. In 2026, that means taking four core actions: 1. Prioritize accuracy Verify data and anchor it in real human identity, rather than inferred or fragmented signals. 2. Keep data fresh Ensure inputs stay current through continuous updates that reflect real-time consumer behavior and conditions. 3. Maintain consent standards Source data responsibly and stay compliant with privacy regulations emerging across 20+ U.S. states. 4. Enable interoperability Connect data securely across platforms through a signal-agnostic identity framework that supports consistency and scale. When these elements come together, AI becomes more than just automation: it becomes adaptive, ethical, and responsive to real-world context. 2. Commerce media expands beyond retail Commerce media is no longer just a retail play. What began as retailers monetizing their data and media has evolved into a multi-sector movement uniting data, media, and transaction insights. Auto, travel, CPG, and even financial brands are launching their own media networks or partnering with existing ones to close the loop between exposure and conversion.

This content is password protected. To view it please enter your password below: Password: